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During the last two decades, methyltert-butyl ether (MTBE) has been widely used as an additive to gasoline (up to 15%) both to in
he octane number and as a fuel oxygenate to improve air quality by reducing the level of carbon monoxide in vehicle exhausts. T
ork mainly deals with photooxidative degradation of MTBE in the presence of H2O2 under UV light illumination (30 W). We studied th

nfluence of the basic operational parameters such as initial concentration of H2O2 and irradiation time on the photodegradation of MT
he oxidation rate of MTBE was low when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of U

ight. The addition of proper amount of hydrogen peroxide improved the degradation, while the excess hydrogen peroxide could
ormation of hydroxyl radicals (•OH). The semi-log plot of MTBE concentration versus time was linear, suggesting a first order re
herefore, the treatment efficiency was evaluated by figure-of-merit electrical energy per order (EEo). Our results showed that MTBE cou
e treated easily and effectively with the UV/H2O2 process withEEo value 80 kWh/m3/order. The proposed model based on artificial ne
etwork (ANN) could predict the MTBE concentration during irradiation time in optimized conditions. A comparison between the p
esults of the designed ANN model and experimental data was also conducted.

2005 Elsevier B.V. All rights reserved.

eywords:Advanced oxidation processes; Artificial neural networks; MTBE; Fuel oxygenate; Electricity consumption

. Introduction

Methyl tert-butyl ether (MTBE) is a fuel additive made,
n part, from natural gas. Since 1979, it has been used as an
ctane enhancing replacement for tetraethyl lead in gasoline
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[1]. Increased oxygen content is required to improve com
tion efficiency and reduce harmful tailpipe emissions, s
as CO, O3, etc., from motor vehicles. To achieve the speci
oxygen content requirements, 5–15% MTBE in gasolin
required[2].

Since MTBE has high water solubility, the occ
rence of fuel spills or leaks from underground stor
tanks or transferring pipeline has led to the contam
tion of natural waters. The United States Environme
Protection Agency (EPA) has classified MTBE as a
pect human carcinogen and issued a draft lifetime h
advisory limit of 20–30 ppb MTBE in drinking wat
[1,3].
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In general, the presence of MTBE complicates reme-
diation attempts. Conventional treatment of MTBE-
contaminated groundwater is inefficient and unsatisfactory.
Air stripping is difficult and requires a high air-to-water
ratio (>200/1 for 5% removal), because of its very low
Henry’s law constant. The low affinity of MTBE towards
granular activated carbon makes this process undesirable
and expensive[4]. It can be treated biologically with spe-
cific bacterial strains or natural isolates under aerobic con-
dition. However, the bacteria grow slowly with low yields
of bio-mass and are sometimes unstable. As a result, a
viable bio-remediation process for MTBE has not been com-
pletely developed[5,6]. Therefore, it is necessary to intro-
duce an effective method in order to complete removal
of MTBE from contaminated waters. In recent years, an
alternative to conventional methods, is “advanced oxida-
tion processes” (AOPs), based on the generation of very
reactive species such as hydroxyl radicals that oxidize a
broad range of organic pollutants quickly and nonselectively
[7–9].

There are several AOPs studies for MTBE treatment, such
as UV/H2O2 [10–12], O3/H2O2 [5,13], photo-Fenton process
[14,15] and UV/TiO2 [3,4]. The intermediate by-products
were identified and the oxidation mechanism was also eluci-
dated[1,12,15].

Due to the complexity of the reactions of UV/HO sys-
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2. Experimental

2.1. Materials

MTBE was obtained from Merck (99%). Hydrogen per-
oxide (30%, w/w), hydrochloric acid and sodium hydroxide
were purchased from Aldrich and used without further purifi-
cation.

2.2. General procedure

For the UV/H2O2 process, irradiation was carried out
with a 30 W (UV-C) mercury lamp (Philips), which was put
above a batch photoreactor of 500 ml in volume. The dis-
tance between solution and UV source was constant, 15 cm,
in all experiments. The desired concentration of MTBE and
H2O2 were fed into the Pyrex reactor. The solution pH val-
ues were adjusted at desired level using dilute NaOH and
HCl and then the pH values were measured with pH meter
(Philips PW 9422). After that, the lamp was switched on to
initiate the reaction. During irradiation, the aqueous solu-
tion was magnetically stirred and the solution was sampled
after an appropriate illumination time. The concentration of
MTBE in each degraded sample was determined with a gas
chromatograph.
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em, a few studies have been conducted involving the kin
f the destruction of MTBE by UV/H2O2 process. To ou
nowledge, Safarzadeh-Amiri and co-workers[11] proposed
he kinetic model based on the initial rates of destruc
f MTBE. Chang and Young[12] investigated the kinetic
f UV/peroxide process in a way that can be genera

or design purposes. Artificial neural networks (ANN) ar
romising alternative modeling technique. The phenom

ogical treatment of a photochemical system is, in gen
uite complex. This is caused by the complexity of s

ng the equations that involve the radiant energy bala
he spatial distribution of the absorbed radiation, mass t
er, and the mechanisms of a photochemical degrad
nvolving radical species. Due to these reasons, the
ling of the degradation process via artificial neural
ork techniques is quite appropriate[16–19]. One of the
haracteristics of modeling based on artificial neural
orks is that it does not require the mathematical des

ion of the phenomena involved in the process, and m
herefore prove useful in simulating and up-scaling c
lex photochemical systems. The success in obtaini
eliable and robust network depends strongly on the ch
f process variables involved as well as the available
f data and the domain used for training purposes[20].
herefore, the aim of the experiments was to investi

he influence of various parameters on photooxidative d
ation of MTBE to optimize the effective parameters.

mportant objective was to obtain an ANN model that co
ake reliable prediction of the efficiency of the destruc
rocess.
.3. Analytical method

MTBE was analyzed by a CP-9001 (CROMPAK) g
hromatograph (GC) equipped with a flame ioniza
etector (FID). A CP Wax (CP-WAX 58CB) colum
50 m× 0.32 mm, 1.2�m film thickness) in connection wi
he FID detector was used. The temperature was program
t 50◦C for 10 min, then to 120◦C at a rate of 5◦C/min, and
eld at 120◦C for 5 min; N2 was the carrier gas. The injec
ort temperature was 180◦C, and the samples were injec

n the split injection mode.

.4. ANN software

All ANN calculations carried out using Matlab 6.5 mat
atical software with ANN toolbox for windows running
personal computer (Pentium IV 2800 MHz). A three-la
etwork with a sigmoidal transfer function (trainscg) w
ack propagation algorithm was designed in this study.

. Results and discussion

.1. Effect of UV irradiation in the presence of H2O2

Fig. 1shows the concentration of MTBE against time
xperiments carried out under UV irradiation only, hydro
eroxide without UV irradiation and UV irradiation in t
resence of hydrogen peroxide. It can be seen from th
re that in the presence of both H2O2 and UV light, 100% o
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Fig. 1. Effect of UV light and H2O2 on photodegradation of MTBE.
[MTBE]o = 10 ppm, [H2O2]o = 60 ppm, pH = 6.5.

MTBE was degraded at the irradiation time of 40 min. This
was contrasted with 44% destruction for the same experiment
performed in the absence of H2O2, and the negligible when
the UV lamp had been switched off and the reaction was
allowed to occur in the darkness. These experiments demon-
strated that both UV light and an oxidizing agent, such as
H2O2 were needed for the effective destruction of MTBE.
The presumed reason is that degradation of MTBE is due to
the hydroxyl radicals generated upon photolysis of hydrogen
peroxide according to the following reactions[21,22]:

H2O2 + hν → 2•OH (1)

H2O2 + •OH → HO2
• + H2O (2)

H2O2 + •O2H → •OH + H2O + O2 (3)

HO2
• + •OH → H2O + O2 (4)

The hydroxyl radical is a powerful oxidizing agent and
attacks MTBE molecule by abstracting a hydrogen atom from
either the methoxy group or any of the three equivalent methyl
groups to form carbon-centered radicals[10].

3.2. Effect of initial hydrogen peroxide concentration

Hydrogen peroxide concentration is an important param-
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Fig. 2. Relationship between ln [MTBE] and irradiation time on photodegra-
dation of MTBE. [MTBE]o = 10 ppm, [H2O2]o = 60 ppm, pH = 6.5.

concentration, scavenging of hydroxyl radicals will occur,
which can be expressed by the Eqs.(2) and(4) [7,22].

Since HO2
• is less reactive than•OH, increased amount of

hydrogen peroxide has a diminishing return on the reaction
rate. Therefore, it is important to optimize the applied dose of
hydrogen peroxide to maximize the performance of the UV/
H2O2 process and minimize the treatment cost[8].

3.3. Electrical energy determination

Since photodegradation of aqueous organic pollutant is
an electric-energy-intensive process, and electric energy can
represent a major fraction of the operating costs, simple
figures-of-merit based on electric energy consumption can
be very useful and informative. Recently, the Photochem-
istry Commission of the International Union of Pure and
Applied Chemistry (IUPAC) proposed a figure-of-merit (or
more appropriately, an efficiency index, as it compares elec-
trical efficiency of different AOPs) for UV-based AOPs[22].
It compares electrical efficiency of different UV-based AOPs
and is a measure of the electrical efficiency of an AOP system.
It is defined (for low concentration of pollutants) as the elec-
trical energy in kilowatt hours (kWh) required bringing about
the degradation of a contaminant by one order of magnitude
in 1 m3 (1000 l) of contaminated water[23].

F of
M

ter for the degradation of the pollutants in the UV/H2O2
rocess. The photodestruction of MTBE has been stu
t different hydrogen peroxide concentrations. Our re
howed that this reaction followed a pseudo-first-order k
cs and that the reaction rate constant was a function o
eroxide concentration. Results are given inFigs. 2 and 3.

According to theFig. 3, as H2O2 concentration increas
he destruction of MTBE is accelerated up to 60 mg/l,
bove it, the destruction rate decreases. This is due t

act that more hydroxyl radicals are formed as H2O2 con-
entration increases (Eq.(1)). However, it should be notice
hat as the H2O2 concentration is over 60 mg/l, for examp
00 mg/l, no further acceleration in the destruction of MT
as observed. This is due to the fact that at a higher H2O2
ig. 3. Effect of initial concentration of H2O2 on photodegradation
TBE. [MTBE]o = 10 ppm, pH = 6.5.
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Fig. 4. EEo determination for photodegradation of MTBE by UV/H2O2 pro-
cess. [MTBE]o = 10 ppm, [H2O2]o = 60 ppm.

Considering first-order destruction kinetics, the UV dose
was calculated for UV/H2O2 process using Eq.(5) [9,24].
The electrical energy per order (EEo) values was obtained
from the inverse of the slope of a plot of log (C0/C) versus
energy dose (kWh/m3) (seeFig. 4).

UV dose= 1000× lamp power (kW)× time (h)

treated volume (l)
(5)

The electric dose (kWh/m3) required to oxidize MTBE
(10 ppm) in the presence of 60 ppm H2O2 at different reaction
times was calculated from the kinetic data (Fig. 4). The cal-
culated dose considers the electric power of the lamp (30 W)
and the total volume of the reactor (200 ml) at the irradiation
time of 40 min.

Finally, it is useful to relate theEEo values found in this
study to treatment costs. For instance, if the treatment objec-
tive for MTBE ([MTBE]o = 10 mg/l) is 1.2 mg/l, this means
a log reduction of 0.921 and hence, the total electrical energy
required is 81.433 kWh/m3. If the cost of electricity, in Iran, is
US$ 0.0065 per kWh, the contribution to treatment cost from
electrical energy will be US$ 0.5298 per m3. In addition, there
will be smaller cost factors for the hydrogen peroxide used
and for lamp replacement.
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Fig. 5. The ANN optimized structure.

The topology of an artificial neural network (ANN)
is determined by the number of layers in the ANN, the
number of nodes in each layer and the nature of the transfer
functions. Optimization of ANN topology is probably the
most important step in the development of a model. We
used three-layered feed forward back propagation neural
network (4:8:1) for modeling of MTBE photodegradation
(Fig. 5). In the present work, the input variables to the
feed forward neural network were as follows: the reaction
time (t), the initial concentration of MTBE, the initial
concentration of H2O2 and pH of the solution. The concen-
tration of MTBE, as a function of reaction time ([MTBE]t),
was chosen as the experimental response or output
variable.

In order to determine the optimum number of hidden
nodes, a series of topologies was used, in which the num-
ber of nodes was varied from 2 to 10. Each topology was
repeated three times to avoid random correlation due to the
random initialization of the weights.Fig. 6illustrates the rela-
tion between the network error and the number of neurons
in the hidden layer. The mean square error (MSE) was used
as the error function. MSE measures the performance of the

F ance
o

.4. Neural network modeling

ANNs are direct inspiration from the biology of hum
rain, where billions of neurons are interconnected to pro
variety of complex information. Accordingly, a comp

ational neural network consists of simple processing u
alled neurons. In general, a neural net, as shown inFig. 5, is
arallel interconnected structure consisting of: (1) input l
f neuron (independent variables), (2) a number of hid

ayers and (3) output layer (dependent variables). The
er of input and output neurons is determined by the natu

he problem. The hidden layers act like feature detector
n theory, there can be more than one hidden layer. Un
al approximation theory, however, suggests that a net
ith a single hidden layer with a sufficiently large numbe
eurons can interpret any input–output structure[18].
ig. 6. Effect of the number of neurons in hidden layer on the perform
f the neural network.
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Table 1
Model variables and their ranges

Variable Range

Input layer
Reaction time (min) 0–60
pH 2.5–12
Initial concentration of MTBE (ppm) 0–36
Initial concentration of H2O2 (ppm) 0–100

Output layer
Concentration of MTBE (ppm) 0–36

network according to the following equation:

MSE = 1

Q
∑Q

i=1(ynn − yexpl)2
(6)

whereQ is the number of data point,ynn the network predic-
tion,yexpl experimental response andi is an index of data. We
can see that the performance of the network stabilized after
inclusion of an adequate number of hidden units just about
eight. The network with too few neurons in the hidden layer
cannot converge effectively.

In this work, the sigmoidal transfer function was used as a
transfer function in the hidden and output layers. This is the
most widely used transfer function, which is given by:

f (x) = 1

1 + exp(−x)
(7)

wheref(x) is the hidden neuron output[18]. The training func-
tion wastrainscg. Out of the several data points generated, 64
experimental sets were used to feed the ANN structure. The
range of variables studied is summarized inTable 1. The sam-
ples were splitted into training, validation and test subsets that
each of them contains 32, 16 and 16 samples, respectively.
The validation and test sets, for evaluation of the validation
and modeling power of the model, were randomly selected
from the experimental data. Since the used transfer function
i aled
i -
d

A

Fig. 7. Comparison of the experimental results with those calculated via
neural network modeling for the test sets.

where min(Xi) and max(Xi) are the extreme values of variable
Xi [20].

Of course, to calculate training, validation and test errors,
all of the outputs were performed an inverse range scaling
to return the predicted responses to their original scale and
compared them with experimental responses. A neural net-
work with eight neurons in the hidden layer was used with
800 iterations, providing the weights listed inTable 2.

Fig. 7shows a comparison between calculated and exper-
imental values of the output variable ([MTBE]t) for test sets,
using the neural network model with number of hidden layer
equal to eight. We used two lines to show the success of the
prediction. The one is the perfect fit (predicted data equal to
experimental data), on which all the data of an ideal model
should lay. The other line is the line that best fits on the data
of the scatter plot with equationY=ax+b and it is obtained
with regression analysis based on the minimization of the
squared errors. The correlation coefficient of this line is also
presented (R2). The closer to 1 this factor is and the closer the
coefficients of the line to 1 and 0, respectively, are the better
the model is. The plot in this figure has correlation coefficient
of 0.998 for the test set. These results confirm that the neural
network model reproduces the photodegradation of MTBE

T
M 2: weights between hidden and output layers

W

N t

1
2
3
4
5
6
7
8

n the hidden layer was sigmoid, all samples must be sc
nto the 0.2–0.8. So any samples (Xi) (from the training, vali
ation and test sets) were scaled to a new valueAi as follows:

i = 0.2 + 0.6(Xi − min(Xi))

max(Xi) − min(Xi)
(8)

able 2
atrices of weights, W1: weights between input and hidden layers; W

1

euron Variable

Time [MTBE]o pH

5.3666 5.1934 4.7207
0.0836 −0.7260 14.6596
6.8655 −8.9152 10.2480
1.5783 3.7490 −9.2868

−17.3715 −0.5233 −3.1753
12.2281 −3.8027 1.2883
16.5064 3.3394 −4.3147
12.3280 11.2680 2.4224
W2

Bias Neuron Weigh

[H2O2]o

−12.7819 −7.1101 1 0.1517
1.8335 −13.133 2 −0.8678
4.2958 −9.5076 3 0.4948

11.4560 1.0073 4 −0.8060
6.5619 2.9307 5 0.5939
3.2496 −2.8009 6 −2.6415
0.6189 4.0552 7 −0.1373
5.9807 −7.1996 8 1.7258

Bias 0.4329
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in our system, within the experimental ranges adopted in the
model fitting.

4. Conclusion

The UV/H2O2 system has been demonstrated to be effi-
cient process for the oxidation of MTBE in aqueous solution.
Photooxidative degradation efficiency of MTBE was small
when photolysis was carried out in the absence of H2O2.
The results indicated that the degree of photodegradation of
MTBE was obviously affected by the initial concentration
of H2O2. We found that the optimal amount of H2O2 was
60 ppm, with MTBE concentration of 10 ppm. The electri-
cal energy per order (EEo) and cost of the required electrical
energy was calculated. Artificial neural network modeling
has been used to investigate the cause effect relationship
prevalent in photooxidation process of MTBE. The ANN
model could describe the behavior of the complex reaction
system (UV/H2O2 process) with the range of experimental
conditions adopted. Simulation based on the ANN model can
then be performed in order to estimate the behavior of the
system under different conditions. This information is essen-
tial for the adequate scale-up and design of industrial scale
batch reactors for the treatment of organic contaminants in
wastewaters.
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