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Abstract

During the last two decades, methgtt-butyl ether (MTBE) has been widely used as an additive to gasoline (up to 15%) both to increase
the octane number and as a fuel oxygenate to improve air quality by reducing the level of carbon monoxide in vehicle exhausts. The present
work mainly deals with photooxidative degradation of MTBE in the presence,@& nder UV light illumination (30 W). We studied the
influence of the basic operational parameters such as initial concentraticiOgfadd irradiation time on the photodegradation of MTBE.

The oxidation rate of MTBE was low when the photolysis was carried out in the abseng®paHd it was negligible in the absence of UV

light. The addition of proper amount of hydrogen peroxide improved the degradation, while the excess hydrogen peroxide could quench the
formation of hydroxyl radicals*©OH). The semi-log plot of MTBE concentration versus time was linear, suggesting a first order reaction.
Therefore, the treatment efficiency was evaluated by figure-of-merit electrical energy peregle®(r results showed that MTBE could

be treated easily and effectively with the U\iB, process witlEg, value 80 kwh/n/order. The proposed model based on artificial neural
network (ANN) could predict the MTBE concentration during irradiation time in optimized conditions. A comparison between the predicted
results of the designed ANN model and experimental data was also conducted.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction [1]. Increased oxygen content is required to improve combus-
tion efficiency and reduce harmful tailpipe emissions, such
Methyl tert-butyl ether (MTBE) is a fuel additive made, asCO, G, etc., from motor vehicles. To achieve the specified
in part, from natural gas. Since 1979, it has been used as aroxygen content requirements, 5-15% MTBE in gasoline is
octane enhancing replacement for tetraethyl lead in gasolinerequired[2].
Since MTBE has high water solubility, the occur-
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In general, the presence of MTBE complicates reme- 2. Experimental
diation attempts. Conventional treatment of MTBE-
contaminated groundwater is inefficient and unsatisfactory. 2.1. Materials
Air stripping is difficult and requires a high air-to-water
ratio (>200/1 for 5% removal), because of its very low MTBE was obtained from Merck (99%). Hydrogen per-
Henry's law constant. The low affinity of MTBE towards oxide (30%, w/w), hydrochloric acid and sodium hydroxide
granular activated carbon makes this process undesirablenvere purchased from Aldrich and used without further purifi-
and expensivg4]. It can be treated biologically with spe- cation.
cific bacterial strains or natural isolates under aerobic con-
dition. However, the bacteria grow slowly with low yields 2.2. General procedure
of bio-mass and are sometimes unstable. As a result, a
viable bio-remediation process for MTBE has not been com-  For the UV/HO, process, irradiation was carried out
pletely developed5,6]. Therefore, it is necessary to intro- with a 30 W (UV-C) mercury lamp (Philips), which was put
duce an effective method in order to complete removal above a batch photoreactor of 500 ml in volume. The dis-
of MTBE from contaminated waters. In recent years, an tance between solution and UV source was constant, 15cm,
alternative to conventional methods, is “advanced oxida- in all experiments. The desired concentration of MTBE and
tion processes” (AOPs), based on the generation of veryH,O, were fed into the Pyrex reactor. The solution pH val-
reactive species such as hydroxyl radicals that oxidize aues were adjusted at desired level using dilute NaOH and
broad range of organic pollutants quickly and nonselectively HCI and then the pH values were measured with pH meter
[7-9]. (Philips PW 9422). After that, the lamp was switched on to
There are several AOPs studies for MTBE treatment, suchinitiate the reaction. During irradiation, the aqueous solu-
as UV/IH02 [10-12] O3/H202[5,13], photo-Fenton process  tion was magnetically stirred and the solution was sampled
[14,15] and UVITIO, [3,4]. The intermediate by-products after an appropriate illumination time. The concentration of
were identified and the oxidation mechanism was also eluci- MTBE in each degraded sample was determined with a gas
dated[1,12,15] chromatograph.
Due to the complexity of the reactions of UV/B; sys-
tem, a few studies have been conducted involving the kinetics2.3. Analytical method
of the destruction of MTBE by UV/BO, process. To our
knowledge, Safarzadeh-Amiri and co-workgr$] proposed MTBE was analyzed by a CP-9001 (CROMPAK) gas
the kinetic model based on the initial rates of destruction chromatograph (GC) equipped with a flame ionization
of MTBE. Chang and Youn{l2] investigated the kinetics detector (FID). A CP Wax (CP-WAX 58CB) column
of UV/peroxide process in a way that can be generalized (50 mx 0.32 mm, 1.2um film thickness) in connection with
for design purposes. Artificial neural networks (ANN) are a the FID detector was used. The temperature was programmed
promising alternative modeling technique. The phenomeno- at 50°C for 10 min, then to 120C at a rate of 3C/min, and
logical treatment of a photochemical system is, in general, held at 120 C for 5 min; N, was the carrier gas. The injector
quite complex. This is caused by the complexity of solv- port temperature was 18C, and the samples were injected
ing the equations that involve the radiant energy balance,in the split injection mode.
the spatial distribution of the absorbed radiation, mass trans-
fer, and the mechanisms of a photochemical degradation2.4. ANN software
involving radical species. Due to these reasons, the mod-
eling of the degradation process via artificial neural net-  All ANN calculations carried out using Matlab 6.5 mathe-
work techniques is quite appropriat#6—19] One of the matical software with ANN toolbox for windows running on
characteristics of modeling based on artificial neural net- a personal computer (Pentium 1V 2800 MHz). A three-layer
works is that it does not require the mathematical descrip- network with a sigmoidal transfer function (trainscg) with
tion of the phenomena involved in the process, and might back propagation algorithm was designed in this study.
therefore prove useful in simulating and up-scaling com-
plex photochemical systems. The success in obtaining a
reliable and robust network depends strongly on the choice 3. Results and discussion
of process variables involved as well as the available set
of data and the domain used for training purpof23). 3.1. Effect of UV irradiation in the presence 0$®G;
Therefore, the aim of the experiments was to investigate
the influence of various parameters on photooxidative degra-  Fig. 1shows the concentration of MTBE against time for
dation of MTBE to optimize the effective parameters. An experiments carried out under UV irradiation only, hydrogen
important objective was to obtain an ANN model that could peroxide without UV irradiation and UV irradiation in the
make reliable prediction of the efficiency of the destruction presence of hydrogen peroxide. It can be seen from the fig-
process. ure that in the presence of both®, and UV light, 100% of
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Flg. 1. Effect of UV I|ght and HO, on phOtOdegradatlon of MTBE. dation of MTBE. [MTBE}) =10 ppm, [I—bOZ]O =60 ppm, pH =6.5.
[MTBE], =10 ppm, [HO2], =60 ppm, pH=6.5.

concentration, scavenging of hydroxyl radicals will occur,
MTBE was degraded at the irradiation time of 40 min. This which can be expressed by the E@and(4) [7,22]_
was contrasted with 44% destruction for the same experiment  Since HQ* is less reactive tha¥OH, increased amount of
performed in the absence o8, and the negligible when  hydrogen peroxide has a diminishing return on the reaction
the UV lamp had been switched off and the reaction was rate. Therefore, it is important to optimize the applied dose of
allowed to occur in the darkness. These experiments demon-hydrogen peroxide to maximize the performance of the UV/
strated that both UV light and an oxidizing agent, such as H,0, process and minimize the treatment d@}t
H2.O, were needed for the effective destruction of MTBE.
The presumed reason is that degradation of MTBE is due t03 3. Electrical energy determination
the hydroxyl radicals generated upon photolysis of hydrogen
peroxide according to the following reactiofs, 22} Since photodegradation of aqueous organic pollutant is
an electric-energy-intensive process, and electric energy can

H,Op + hv— 2°0OH 1) ? i . >
represent a major fraction of the operating costs, simple
H202+°*OH — HO2* + H0 2) figures-of-merit based on electric energy consumption can
be very useful and informative. Recently, the Photochem-
H202+4°02H — °*OH + H20 + O3 3) istry Commission of the International Union of Pure and
HO,® + *OH — H20 + O, 4) Applied Chemistry (IUPAC) proposed a figure-of-merit (or

more appropriately, an efficiency index, as it compares elec-
The hydroxyl radical is a powerful oxidizing agent and trical efficiency of different AOPs) for UV-based AOFZ2].
attacks MTBE molecule by abstracting a hydrogen atom from It compares electrical efficiency of different UvV-based AOPs
either the methoxy group or any of the three equivalent methyl and is a measure of the electrical efficiency of an AOP system.
groups to form carbon-centered radicgle]. Itis defined (for low concentration of pollutants) as the elec-
trical energy in kilowatt hours (kWh) required bringing about
the degradation of a contaminant by one order of magnitude

3.2. Effect of initial hydrogen peroxide concentration ; ©
in 1 m3 (1000 1) of contaminated wat@23].

Hydrogen peroxide concentration is an important param-

eter for the degradation of the pollutants in the Uy@ 0.08
process. The photodestruction of MTBE has been studied 0.07
at different hydrogen peroxide concentrations. Our results 0.06 1
showed that this reaction followed a pseudo-first-order kinet- = 0054
ics and that the reaction rate constant was a function ofthe € . -
peroxide concentration. Results are givelfrigs. 2 and 3 = 003
According to theFig. 3, as HO» concentration increases :
the destruction of MTBE is accelerated up to 60 mg/l, but ]
above it, the destruction rate decreases. This is due to the 0.011
fact that more hydroxyl radicals are formed agQd con- R o e - S rm
centration increases (EfL)). However, it should be noticed [H,0,] (pPm)

that as the KO, concentration is over 60 mg/l, for example,
100 mg/l, no further acceleration in the destruction of MTBE  Fig. 3. Effect of initial concentration of 0, on photodegradation of
was observed. This is due to the fact that at a highgdH MTBE. [MTBE], =10 ppm, pH =6.5.
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Fig. 4. Ego determination for photodegradation of MTBE by U8, pro-
cess. [MTBE} =10 ppm, [HO2]o =60 ppm.
Fig. 5. The ANN optimized structure.

Considering first-order destruction kinetics, the UV dose
was calculated for UV/BO, process using Eq5) [9,24]
The electrical energy per ordeEd,) values was obtained
from the inverse of the slope of a plot of loGd/C) versus
energy dose (KWh/A) (seeFig. 4).

The topology of an artificial neural network (ANN)
is determined by the number of layers in the ANN, the
number of nodes in each layer and the nature of the transfer
functions. Optimization of ANN topology is probably the
1000x lamp power (kW)x time (h) most important step in the development of a model. We
= (5) used three-layered feed forward back propagation neural
network (4:8:1) for modeling of MTBE photodegradation

The electric dose (KWh/&) required to oxidize MTBE ~ (Fig. 9. In the present work, the input variables to the
(10 ppm) in the presence of 60 ppr®h at differentreaction  feed forward neural network were as follows: the reaction
times was calculated from the kinetic daFag(. 4). The cal-  time (), the initial concentration of MTBE, the initial
culated dose considers the electric power of the lamp (30 W) concentration of KO, and pH of the solution. The concen-
and the total volume of the reactor (200 ml) at the irradiation tration of MTBE, as a function of reaction time ((MTBE]
time of 40 min. was chosen as the experimental response or output

Finally, it is useful to relate th&g, values found in this ~ variable.
study to treatment costs. For instance, if the treatment objec-  In order to determine the optimum number of hidden
tive for MTBE ([MTBE]o =10 mg/l) is 1.2 mg/l, this means  hodes, a series of topologies was used, in which the num-
alog reduction of 0.921 and hence, the total electrical energyPer of nodes was varied from 2 to 10. Each topology was
required is 81.433 kWh/flIfthe cost of electricity, in Iran,is ~ fepeated three times to avoid random correlation due to the
US$ 0.0065 per kWh, the contribution to treatment cost from fandominitialization of the weightsig. 6illustrates the rela-
electrical energy will be US$ 0.5298 pefnin addition, there  tion between the network error and the number of neurons

will be smaller cost factors for the hydrogen peroxide used in the hidden layer. The mean square error (MSE) was used
and for lamp replacement. as the error function. MSE measures the performance of the

UV dose

treated volume (1)

3.4. Neural network modeling

ANNSs are direct inspiration from the biology of human
brain, where billions of neurons are interconnected to process
a variety of complex information. Accordingly, a compu-
tational neural network consists of simple processing units
called neurons. In general, a neural net, as showagns, is
parallel interconnected structure consisting of: (1) input layer
of neuron (independent variables), (2) a number of hidden
layers and (3) output layer (dependent variables). The num-
ber of input and output neurons is determined by the nature of _
the problem. The hidden layers act like feature detectors and 01
in theory, there can be more than one hidden layer. Univer-
sal approximation theory, however, suggests that a network

with a single hidden layer with a sufficiently large number of Fig. 6. Effect of the number of neurons in hidden layer on the performance
neurons can interpret any input—output struc{dgj. of the neural network.

MSE*10-4
2 i Ay O S 0 &

-

2 4 6 8 10
Number of hidden neurons
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Table 1 40 x
Model variables and their ranges a5 ‘0/’
Variable Range = y = 0.849x + 0.842 o
S 30} R? = 0.998 Ry
Input layer e Test data o
Reaction time (min) 0-60 T 6l A
pH 2.5-12 £ %
Initial concentration of MTBE (ppm) 0-36 ;E:; 20} - y
Initial concentration of HO, (ppm) 0-100 = 7
L o
Output layer o
Concentration of MTBE (ppm) 0-36 E 10 [
. . . 5F
network according to the following equation:
0‘ - L i 1 i 1 i 1
MSE = 1 (6) 0 5 10 15 20 25 30 35 40
QZinl(ynn - yEXp|)2 [MTBE],regicted(PPM)

V_VhereQ is the qumber of data pOII’}t!nn the. network predic- Fig. 7. Comparison of the experimental results with those calculated via
tion, yexpl €xperimental response anid an index of data. We  neural network modeling for the test sets.

can see that the performance of the network stabilized after
inclusion of an adequate number of hidden units just about
eight. The network with too few neurons in the hidden layer
cannot converge effectively.

In this work, the sigmoidal transfer function was used as a
transfer function in the hidden and output layers. This is the
most widely used transfer function, which is given by:

1

where mink;) and maxX;) are the extreme values of variable
Xi [20].

Of course, to calculate training, validation and test errors,
all of the outputs were performed an inverse range scaling
to return the predicted responses to their original scale and
compared them with experimental responses. A neural net-

f() = @) work with eight neurons in the hidden layer was used with
1+ exp(=x) 800 iterations, providing the weights listedTable 2
wheref(x) is the hidden neuron outpfit8]. The training func- Fig. 7shows a comparison between calculated and exper-

tion wastrainscg Out of the several data points generated, 64 Imental values of the output variable ([MTBttfor test sets,
experimental sets were used to feed the ANN structure. TheUSing the neural network model with number of hidden layer
range of variables studied is summarize@able 1 The sam-  €qual to eight. We used two lines to show the success of the
ples were splitted into training, validation and test subsets thatPrediction. The one is the perfect fit (predicted data equal to
each of them contains 32, 16 and 16 samples, respectively.eXpe”me”tal data), on whlch aII_ the data of an ideal model
The validation and test sets, for evaluation of the validation Should lay. The other line is the line that best fits on the data
and modeling power of the model, were randomly selected ©f the scatter plot with equatiori=ax+b and it is obtained
from the experimental data. Since the used transfer functionWith regression analysis based on the minimization of the
in the hidden layer was sigmoid, all samples must be scalegsSduared errors. The correlation coefficient of this line is also

into the 0.2—0.8. So any samplé&)((from the training, vali- presentedR?). The closer to 1 this factor is and the closer the
dation and test sets) were scaled to a new vajuss follows: coefficients of the line to 1 and 0, respectively, are the better
i the model is. The plot in this figure has correlation coefficient
A =02+ 0.6(X; — min(X5)) @)  ©0f0.998for the test set. These results confirm that the neural
max(X;) — min(X;) network model reproduces the photodegradation of MTBE
Table 2
Matrices of weights, W1: weights between input and hidden layers; W2: weights between hidden and output layers
w1 w2
Neuron Variable Bias Neuron Weight
Time [MTBE], pH [H202]0
1 5.3666 51934 47207 127819 -7.1101 1 01517
2 0.0836 —0.7260 146596 18335 -13133 2 —0.8678
3 6.8655 —8.9152 102480 42958 —-9.5076 3 04948
4 15783 37490 —9.2868 114560 10073 4 —0.8060
5 —-17.3715 —0.5233 —-3.1753 65619 29307 5 05939
6 122281 —3.8027 12883 32496 —2.8009 6 —2.6415
7 165064 33394 —4.3147 06189 40552 7 —0.1373
8 123280 112680 24224 59807 —7.1996 8 17258
Bias 04329
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in our system, within the experimental ranges adopted in the [7] N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation
model fitting. of azo dye acid red 14 in water: investigation of the effect of oper-
ational parameters, J. Photochem. Photobiol. A 157 (2003) 111-
116.
N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degrada-
tion of azo dye acid red 14 in water on ZnO as an alternative
catalyst to TiQ, J. Photochem. Photobiol. A 162 (2004) 317-
The UV/H,O; system has been demonstrated to be effi- 322.

cient process for the oxidation of MTBE in aqueous solution. [9] N- Daneshvar, A. Aleboyeh, A.R. Khataee, The evaluation of electri-

Sy . . cal energy per order (EEo) for photooxidative decolorization of four
PhotOOX|dat|ve.degradauo.n efﬁuepcy of MTBE was small textile dye solutions by the kinetic model, Chemosphere 59 (2005)
when photolysis was carried out in the absence 9OH 761_767.
The results indicated that the degree of photodegradation of{10] Y. zang, R. Farnood, Effects of hydrogen peroxide concentration
MTBE was obviously affected by the initial concentration and ultraviolet light intensity on methyert-butyl ether degradation
of H,0,. We found that the optimal amount of,B, was kinetics, Chem. Eng. Sci. 60 (2005) 1641-1648. =

. . . [11] S.R. Cater, M.I. Stefan, J.R. Bolton, A. Safarzadeh-Amiri, UM@A
60 ppm, with MTBE concentration of 10 ppm' The ele.ctrl- treatment of methylert-butyl ether in contaminated waters, Environ.
cal energy per ordeEg,) and cost of the required electrical Sci. Technol. 34 (2000) 659-662.
energy was calculated. Artificial neural network modeling [12] P.B.L. Chang, T.M. Young, Kinetics of methigrt-butyl ether degra-
has been used to investigate the cause effect relationship  dation and by-product formation during UV/hydrogen peroxide water
prevalent in photooxidation process of MTBE. The ANN treatment, Water Res. 34 (2000) 2233-2240.
. . . [13] A. Safarzadeh-Amiri, @H>0, Treatment of methytert-butyl ether

model could describe the behawor of the complex.reactlon (MTBE) in contaminated waters, Water Res. 35 (2001) 3706
system (UV/HO, process) with the range of experimental 3714,
conditions adopted. Simulation based on the ANN model can[14] A. Safarzadeh-Amiri, J.R. Bolton, S.R. Cater, Ferrioxalate-mediated
then be performed in order to estimate the behavior of the photodegradation of organic pollutants in contaminated water, Water
system under different conditions. This information is essen- ___ Res: 31 (1997) 787-798.

tial for the adequate scale-up and design of industrial scale[ls] A. Safarzadeh-Amiri, J.R. Bolton, S.R. Cater, Ferrioxalate-mediated

[8

—

4. Conclusion

—

batch reactors for the treatment of organic contaminants in

wastewaters.
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